Study of PET scanner designs using clinical metrics to optimize the scanner axial FOV and crystal thickness.
نویسندگان
چکیده
The aim of this study is to understand the trade-off between crystal thickness and scanner axial field-of-view FOV (AFOV) for clinical PET imaging. Clinical scanner design has evolved towards 20-25 mm thick crystals and 16-22 cm long scanner AFOV, as well as time-of-flight (TOF) imaging. While Monte Carlo studies demonstrate that longer AFOV and thicker crystals will lead to higher scanner sensitivity, cost has prohibited the building of commercial scanners with >22 cm AFOV. In this study, we performed a series of system simulations to optimize the use of a given amount of crystal material by evaluating the impact on system sensitivity and noise equivalent counts (NEC), as well as image quality in terms of lesion detectability. We evaluated two crystal types (LSO and LaBr3) and fixed the total crystal volume used for each type (8.2 L of LSO and 17.1 L of LaBr3) while varying the crystal thickness and scanner AFOV. In addition, all imaging times were normalized so that the total scan time needed to scan a 100 cm long object with multiple bed positions was kept constant. Our results show that the highest NEC cm(-1) in a 35 cm diameter ×70 cm long line source cylinder is achieved for an LSO scanner with 10 mm long crystals and AFOV of 36 cm, while for LaBr3 scanners, the highest NEC cm(-1) is obtained with 20 mm long crystals and an AFOV of 38 cm. Lesion phantom simulations show that the best lesion detection performance is achieved in scanners with long AFOV (≥36 cm) and using thin crystals (≤10 mm of LSO and ≤20 mm of LaBr3). This is due to a combination of improved NEC, as well as improved lesion contrast estimation due to better spatial resolution in thinner crystals. Alternatively, for lesion detection performance similar to that achieved in standard clinical scanner designs, the long AFOV scanners can be used to reduce the total scan time without increasing the amount of crystal used in the scanner. In addition, for LaBr3 based scanners, the reduced lesion contrast relative to LSO based scanners requires improved timing resolution and longer scan times in order to achieve lesion detectability similar to that achieved in an LSO scanner with similar NEC cm(-1).
منابع مشابه
Design and performance evaluation of spheroid geometry for brain PET scanner using Monte Carlo modeling
Introduction: There has been a curiosity about the spheroid geometry for PET scanners developments since several years ago, therefore in this study, we are aiming to evaluate the performance of this geometry and compare its performance with cylindrical geometry using Monte Carlo simulation. Methods: We simulated a spheroid geometry with a radius of 199 mm...
متن کاملValidation and evaluation of a GATE model for MAMMI PET scanner
Introduction:MAMMI is a dedicated PET based on high resolution detectors placed close to the breast. In this study, we presented a GATE model for the simulation of MAMMI scanner and model its performance of the MAMMI based on an adaptation of the NU 4-2008 NEMA standard. Methods:A detailed of geometry MAMMI system that uses scintillation crystals coupled...
متن کاملA Prototype High-Resolution Small-Animal PET Scanner Dedicated to Mouse Brain Imaging.
UNLABELLED We developed a prototype small-animal PET scanner based on depth-encoding detectors using dual-ended readout of small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. METHODS The scanner consists of 16 tapered dual-ended-readout detectors arranged in a 61-mm-diameter ring. The axial field of view (FOV) is 7 mm, and the trans...
متن کاملPerformance comparison of four commercial GE discovery PET/CT scanners: A monte carlo study using GATE
Combined PET/CT scanners now play a major role in medicine for in vivo imaging in oncology, cardiology, neurology, and psychiatry. As the performance of a scanner depends not only on the scintillating material but also on the scanner design, with regards to the advent of newer scanners, there is a need to optimize acquisition protocols as well as to compare scanner ...
متن کاملDynamic comparison of PET imaging performance between state-of-the-art ToF-PET/CT and ToF-PET/MR scanners
GE Healthcare The goal of the present work was to determine the potential for dose reduction in a new clinical ToF-PET/MR scanner. This was achieved by means of long dynamic phantom acquisitions designed to provide a fair comparison of image quality and lesion detectability, as a function of activity, between the new PET/MR system and a state-of-the art PET/CT. A NEMA body phantom was scanned, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physics in medicine and biology
دوره 58 12 شماره
صفحات -
تاریخ انتشار 2013